Some non-soluble factorizable groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS

An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...

متن کامل

The number of Fuzzy subgroups of some non-abelian groups

In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.

متن کامل

Constructing quantum games from non-factorizable probabilities

A probabilistic framework is developed in which one can analyze both the classical and the quantum games. We suggest exploiting peculiar probabilities involved in the Einstein-Podolsky-Rosen (EPR) experiments to construct quantum games. In our framework a game attains classical interpretation when probabilities are factorizable and a quantum game corresponds when probabilities cannot be factori...

متن کامل

Non-Factorizable Branes on the Torus

One of the important open problems in string theory is the lack of a systematic way to compute Yukawa couplings in generic situations. For the special case of tori wrapped by factorizable branes, that is branes wrapping a cycle in H1(T2,Z)3 ⊂ H3(T6,Z), instanton sums can be used to compute Yukawa couplings. But anything more complex ceases to be feasible at least in practice. Matrix factorizati...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 1970

ISSN: 0019-2082

DOI: 10.1215/ijm/1256053305